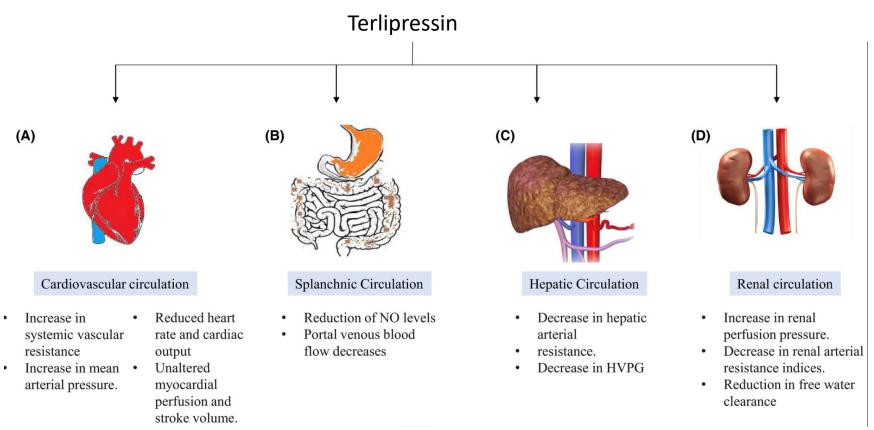
Albumin Dosing With Terlipressin for the Treatment of HRS-AKI: A Double-Edged Sword

Florence Wong¹, S. Chris Pappas², Michael P. Curry³, Pratima Sharma⁴, Khurram Jamil ⁵

Department of Medicine, University of Toronto, Toronto, Ontario, Canada;
Orphan Therapeutics, LLC, Longboat Key, FL, USA;
Department of Medicine, Beth Israel Deaconess Medical Centre, Boston, MA, USA;
USA;
Mallinckrodt Pharmaceuticals, Bridgewater, NJ, USA

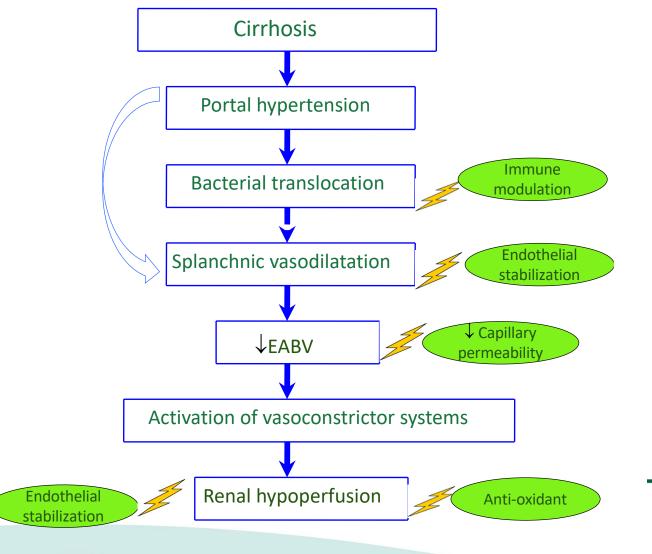
Disclosures

- Mallinckrodt Pharmaceuticals Consultancy, Grant support
- Ocelot Bio Consultancy, Grant support
- River 2 Renal Consultancy

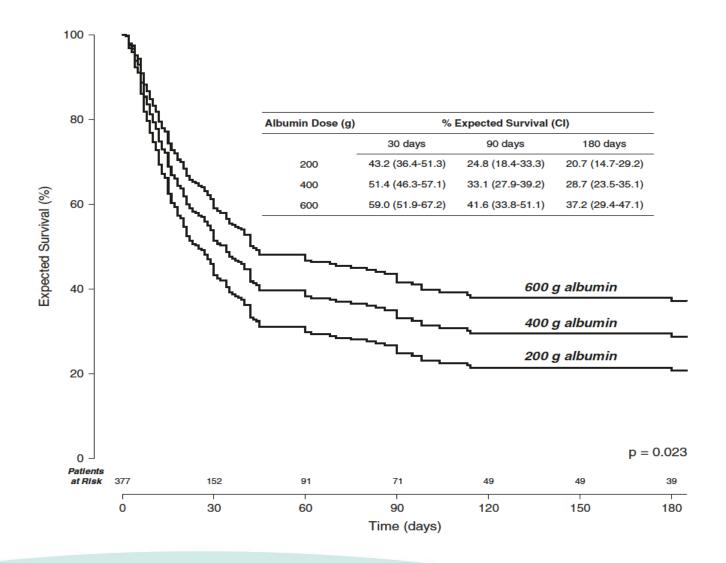


Hepatorenal Syndrome (HRS)

- HRS type 1 is a form of functional rapidly progressive renal failure that occurs in patients with decompensated cirrhosis with ascites¹
- It is fatal unless timely treatment is provided
- The recommended treatment is a vasoconstrictor together with albumin
- Terlipressin is the first and only US FDA-approved vasoconstrictor recommended to treat patients with cirrhosis, ascites with a rapid reduction in kidney function²


Use of Terlipressin in HRS

(Kulkarni AV, Liver International 2020)



Use of Albumin in HRS

Use of Albumin in HRS

19 studies, 574 patients Various vasoconstrictors

(Salerno F. et al, BMC Gastroenterology 2015)

Treatment of HRS-AKI

- However, excess albumin theoretically may increase the risk for respiratory failure which was observed in 8% of patients who received terlipressin in the recent CONFIRM trial¹
- The optimal dose of albumin to be given pre- and during HRS treatment remains unclear

Aim

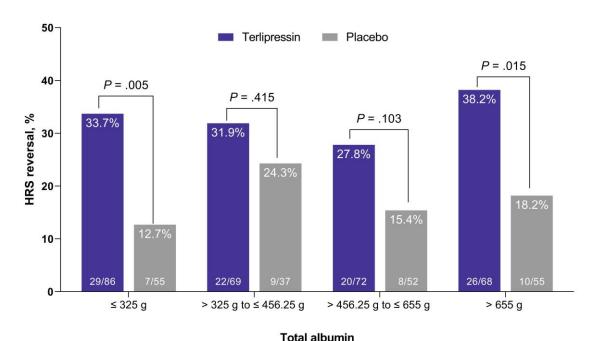
 To evaluate the optimal dose of albumin with respect to efficiency and safety, based on the pooled analysis of the 2 largest randomized controlled trials of terlipressin plus albumin versus placebo in patients with HRS type 1

Methods (1)

- Data were pooled from 2 Phase III randomized, placebocontrolled studies in patients with cirrhosis, ascites & HRS1:
 - CONFIRM 1 (NCT02770716; n = 300)
 - REVERSE² (NCT01143246; n = 196)
- Patients were divided into albumin dose quartiles and compared

Methods (2)

- The following clinical outcomes were assessed by total albumin quartiles:
 - Incidence of HRS reversal, defined as SCr ≤ 1.5 mg/dL by Day 14 or discharge
 - Transplant-free survival (TFS), analyzed using a Kaplan-Meier product limit method
- Total albumin included albumin administered up to 14 days prior to randomization, and concomitant albumin administered during study treatment



Results

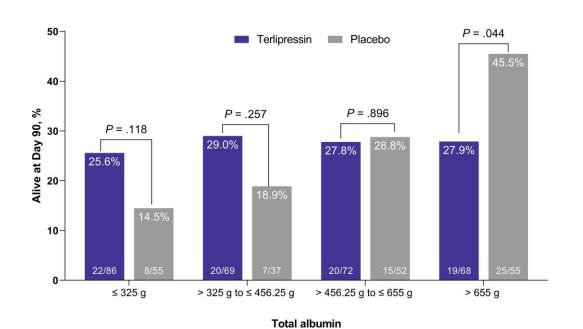
	Terlipressin					Placebo				
Albumin dose	≤325g	>325 – 456.25g	>456.25- 655g	>655g	P value	≤325g	>325 – 456.25g	>456.25- 655g	>655g	P value
n	86	69	72	68		55	37	52	55	
Age	55.3±10.0	55.2±11.9	53.7±10.7	53.8±9.4	0.388	54.4±10.0	56.7±10.4	51.8±11.0	54.8±9.7	0.294
M (%)	47 (57%)	34 (49%)	43 (60%)	46 (68%)	0.182	32 (58%)	21 (57%)	34 (65%)	38 (69%)	0.555
Na	132 ±5.7	132±6.8	133±5.4	134±5.9	0.596	132±5.1	132±5.8	133±6.2	134±5.7	0.402
Creatinine	3.4±0.97	3.5±1.05	3.6±1.03	3.6±1.06	0.403	3.6±1.12	3.7±1.03	3.6±1.17	3.6±1.03	0.834
INR	2.2±0.74	2.2±0.76	2.4±0.85	2.2±0.90	0.506	2.2±0.71	2.3±1.10	2.7±3.41	2.2±0.73	0.883
Bilirubin	12.3±12.2	13.6±13.3	13.2±13.1	10.4±11.7	0.285	13.6±13.1	15.7±19.3	14.1±13.9	11.3±11.9	0.917
Albumin	3.4±0.73	3.5±0.63	3.8±0.69	4.0±0.71	<0.001	3.3±0.63	3.6±0.61	3.7±0.78	4.4±3.4	<0.001
MELD-Na	32.9±6.4	33.4±5.8	33.5±6.5	31.8±7.3	0.578	32.9±5.4	32.8±6.8	33.0±6.1	32.7±5.5	0.973

HRS reversal

Figure 1. Incidence of HRS reversal by Day 90 by quartiles of total albumin and treatment group; ITT population^a

- The incidence of HRS reversal was numerically higher among patients in the terlipressin group (vs placebo) across all albumin subgroup levels
- There was no dose-response relationship between total albumin use and HRS reversal for either treatment group

HRS, hepatorenal syndrome; ITT, intent-to-treat.

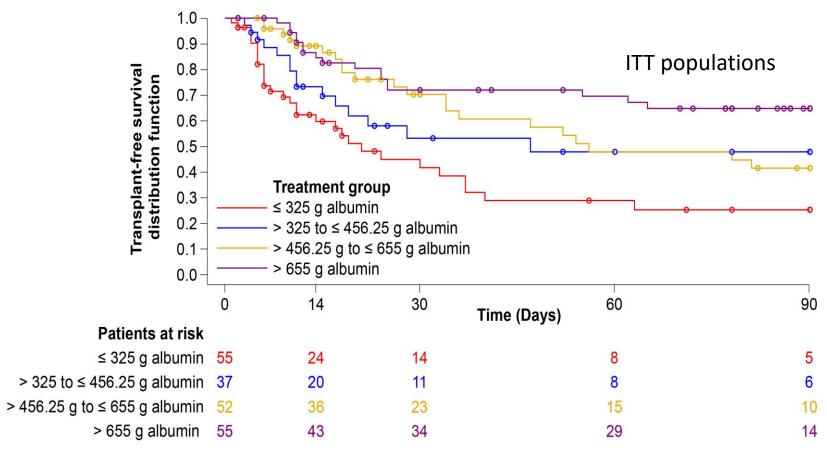

1. Wong F et al. N Engl J Med. 2021;384(9):818-828. 2. Boyer TD et al. Gastroenterology. 2016;150(7):1579-1589.

^a Based on pooled data from CONFIRM ¹ and REVERSE².

Incidence of survival without a liver transplant by Day 90

Figure 5. Incidence of survival by Day 90 without a liver transplant by quartiles of total albumin; ITT population^a

 No such differences were observed among the terlipressin patients between the albumin quartiles



In the highest albumin quartile (ie, > 655 g), significantly more patients were alive without a transplant in the placebo group (vs terlipressin group) by Day 90

 $^{^{\}rm a}$ Based on pooled data from CONFIRM $^{\rm 1}$ and REVERSE². ITT, intent-to-treat.

^{1.} Wong F et al. N Engl J Med. 2021;384(9):818-828. 2. Boyer TD et al. Gastroenterology. 2016;150(7):1579-1589.

90-Day Transplant-free survival in Placebo patients


In the placebo group, transplant free survival increased with increasing albumin

^a Based on pooled data from CONFIRM ¹ and REVERSE². ITT, intent-to-treat; TFS, transplant-free survival.

^{1.} Wong F et al. N Engl J Med. 2021;384(9):818-828. 2. Boyer TD et al. Gastroenterology. 2016;150(7):1579-1589.

90-Day Transplant-free survival in Terlipressin patients

There was no clear relationship between total albumin use and TFS in the terlipressin group

^a Based on pooled data from CONFIRM ¹ and REVERSE². ITT, intent-to-treat; TFS, transplant-free survival.

^{1.} Wong F et al. N Engl J Med. 2021;384(9):818-828. 2. Boyer TD et al. Gastroenterology. 2016;150(7):1579-1589.

Adverse events leading to death up to 30 days

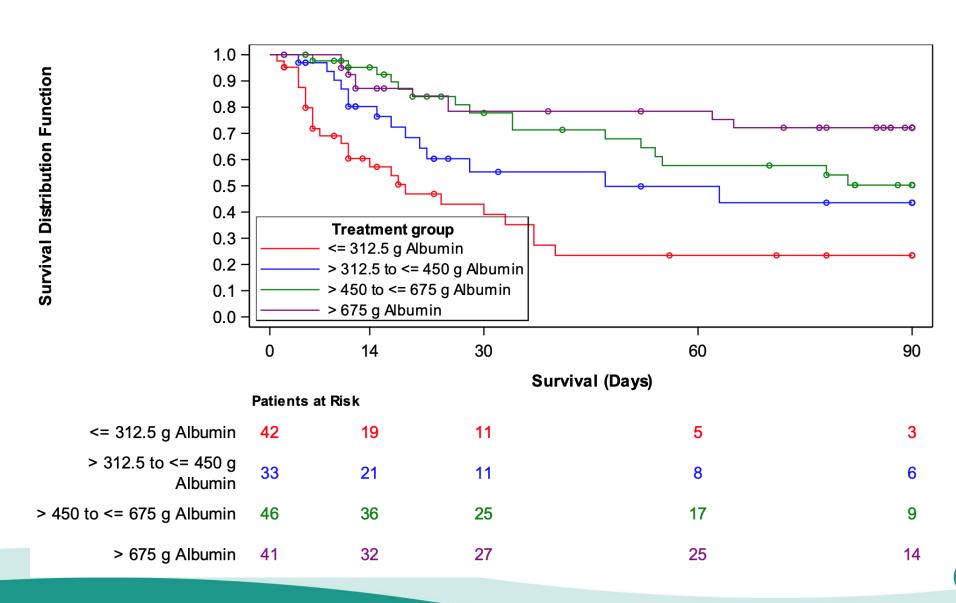
Table 1. AEs leading to death reported up to 30 days posttreatment (≥ 3%); Safety population

	CONF	IRM ¹	REVERSE ²		
	Terlipressin (n = 200)	Placebo (n = 99)	Terlipressin (n = 93)	Placebo (n = 95)	
Total AE leading to death	83 (41.5)	40 (40.4)	35 (37.6)	34 (35.8)	
MODS	9 (4.5)	3 (3.0)	8 (8.6)	5 (5.3)	
Chronic hepatic failure	9 (4.5)	8 (8.1)	9 (9.7)	5 (5.3)	
Hepatic failure	9 (4.5)	9 (9.1)	1 (1.1)	5 (5.3)	
Respiratory failure	11 (5.5)	0 (0.0)	4 (4.3)	1 (1.1)	
Sepsis	4 (2.0)	0 (0.0)	3 (3.2)	2 (2.1)	
Acute respiratory failure	6 (3.0)	1 (1.0)	2 (2.2)	1 (1.1)	
Septic shock	4 (2.0)	0 (0.0)	3 (3.2)	1 (1.1)	
Hepatorenal syndrome	2 (1.0)	3 (3.0)	4 (4.3)	2 (2.1)	
Hepatic cirrhosis	6 (3.0)	1 (1.0)	0 (0.0)	1 (1.1)	
Renal failure	3 (1.5)	0 (0.0)	2 (2.2)	1 (1.1)	
Alcoholic cirrhosis	4 (2.0)	3 (3.0)	1 (1.1)	1 (1.1)	

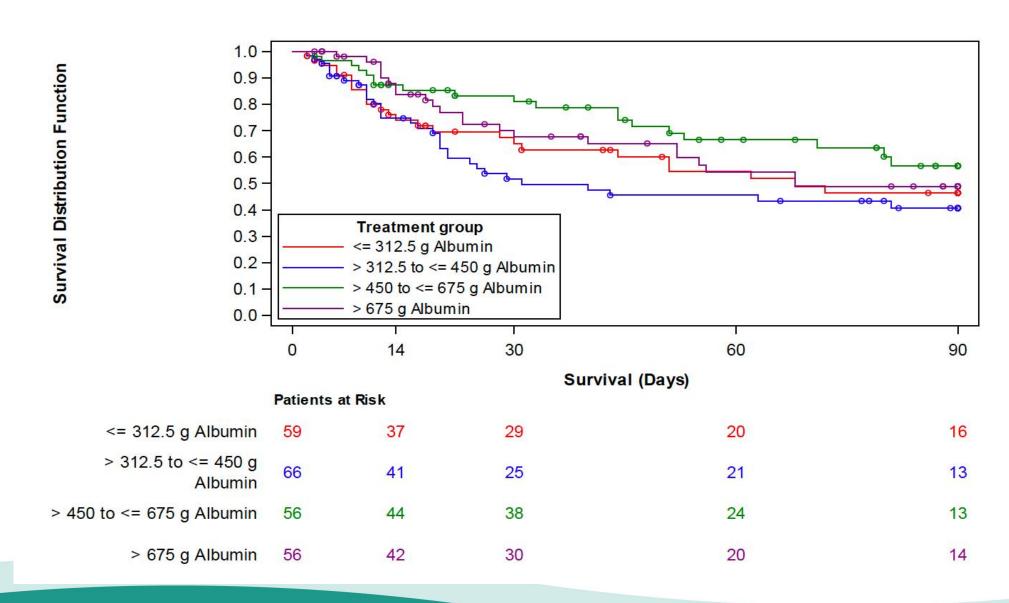
 Incidence of death from respiratory failure/sepsis/septic shock in the pooled population:

Terlipressin: 12.6% (37/293)

• Placebo: 3.0% (6/194)

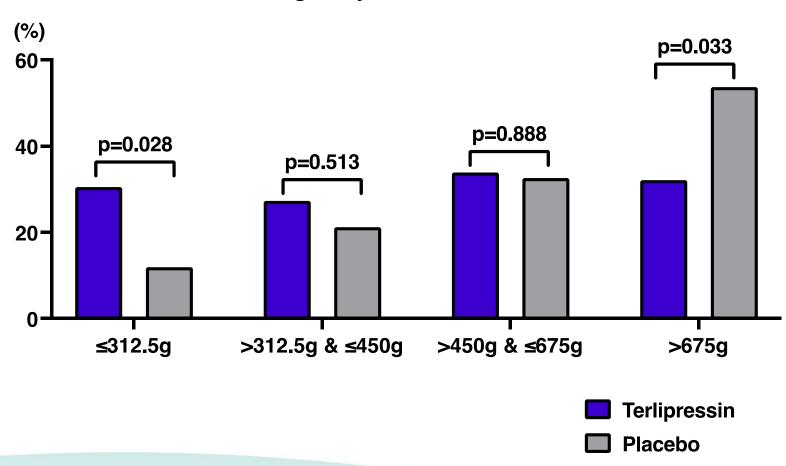


Data are presented as n (%).


AE, Adverse events; MODS, multiple organ dysfunction syndrome

1. Wong F et al. N Engl J Med. 2021;384(9):818-828. 2. Boyer TD et al. Gastroenterology. 2016;150(7):1579-1589.

90-Day Transplant-free survival Without ACLF3- Placebo Patients



90-Day Transplant-free survival Without ACLF3- Terlipressin Patients

90-Day Transplant-free Survival without ACLF3

Summary

- Although albumin has many beneficial effects, it is not "the more the merrier"
- When excluding patients with ACLF ≥grade 3, the use of lower doses of albumin with terlipressin provides a survival advantage over placebo
- Higher doses of albumin are not necessarily useful with
 AASLD Nov. 10-14, 2023
 The Liver Meeting*

Conclusions

 The relationship between albumin use and the balance between efficacy and safety is complex

 This "double-edged sword" underscores the need for careful patient selection and monitoring of albumin use to avoid volume overload

Acknowledgement

 The authors would like to acknowledge the funding by Mallinckrodt Pharmaceuticals for this study

ASLD Nov. 10-14, 2023 Stronger The Liver Together Meeting®