# Systematic Review and Meta-Analysis of Extracorporeal Photopheresis for the Treatment of Steroid-Refractory Chronic Graft-Versus-Host Disease

Zachariah DeFilipp,¹ Laura Fox,² Tobias A.W. Holderried,³ Varun Mehra,⁴ David Michonneau,⁵ Andy Ingram,⁶ Alex Pashley,ˀ Andrei Karlsson,⁶ Dennis Dong Hwan Kimゥ



# Objectives

To evaluate the clinical efficacy and safety of extracorporeal photopheresis for the treatment of steroid-refractory chronic graft-versus-host disease.



## Background

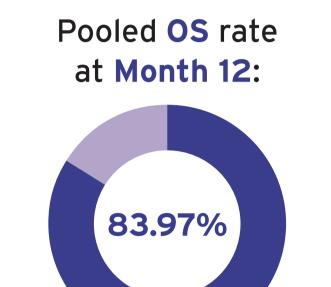
- Chronic graft-versus-host disease (cGvHD) is associated with substantial morbidity and non-relapse mortality in hematopoietic cell transplant (HCT) recipients.<sup>1</sup>
- Extracorporeal photopheresis (ECP), which mediates an anti-GvHD effect via immunomodulation, is recommended as a treatment option for steroid refractory cGvHD (SR-cGvHD).2-4

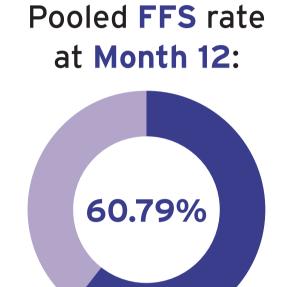
### Methods

- ► A systematic literature review (SLR) was conducted according to PRISMA guidelines.
- ► MEDLINE, Embase, Cochrane, DARE and relevant conference proceedings were searched to 19 October 2022 for studies of patients with SR-cGvHD receiving ECP and reporting on efficacy, safety or health-related quality of life (HRQoL) outcomes.
- ► A feasibility assessment (FA) was conducted to assess sources of potential between-study heterogeneity in the meta-analyses (MA).
- Random-effects MAs were performed for long- and short-term efficacy outcomes including overall survival (OS) and failure-free survival (FFS), and overall response rate (ORR) and skin-specific response, respectively.
- ► Timepoint windows were used for ORR (Months 3–4 and Months 6-8) and skin-specific response (Months 2-3and Months 4-6).
- Insufficient safety and HRQoL data precluded further analysis.
- ► A subgroup analysis for ORR only was conducted to explore the effect of outcome assessment criteria (National Institutes of Health [NIH] vs non-NIH/unknown).

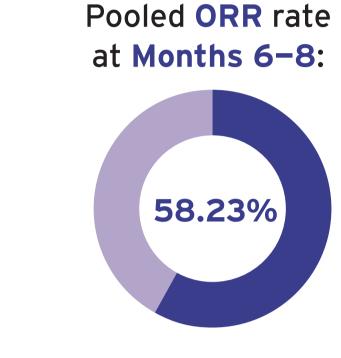
ABBREVIATIONS: CI: confidence interval; cGvHD: chronic graft-versus-host disease; ECP: extracorporeal photopheresis; FA: feasibility assessment; FFS: failure-free survival; HCT: hematopoietic cell transplantation; HRQoL: health-related quality of life; MA: meta-analyses; NIH: National Institutes of Health; ORR: overall response rate; OS: overall survival; **SLR:** systematic literature review: **SR-cGVHD:** steroid refractory cGvHD.

**INSTITUTIONS:** <sup>1</sup>Massachusetts General Hospital, Boston, US; <sup>2</sup>Vall d'Hebron University Hospital, Barcelona, Spain; <sup>3</sup>University Hospital Bonn, Bonn, Germany; <sup>4</sup>Kings College Hospital London, London, UK; <sup>5</sup>Hôpital Saint-Louis, Paris, Assistance Publique des Hôpitaux de Paris, Université Paris Cité, Paris, France; <sup>6</sup>Mallinckrodt Pharmaceuticals, Surrey, UK <sup>7</sup>Costello Medical, Cambridge, UK; <sup>8</sup>Costello Medical, London, UK; <sup>9</sup> Princess Margaret Cancer Centre, University Hospital Toronto, Toronto, Canada.

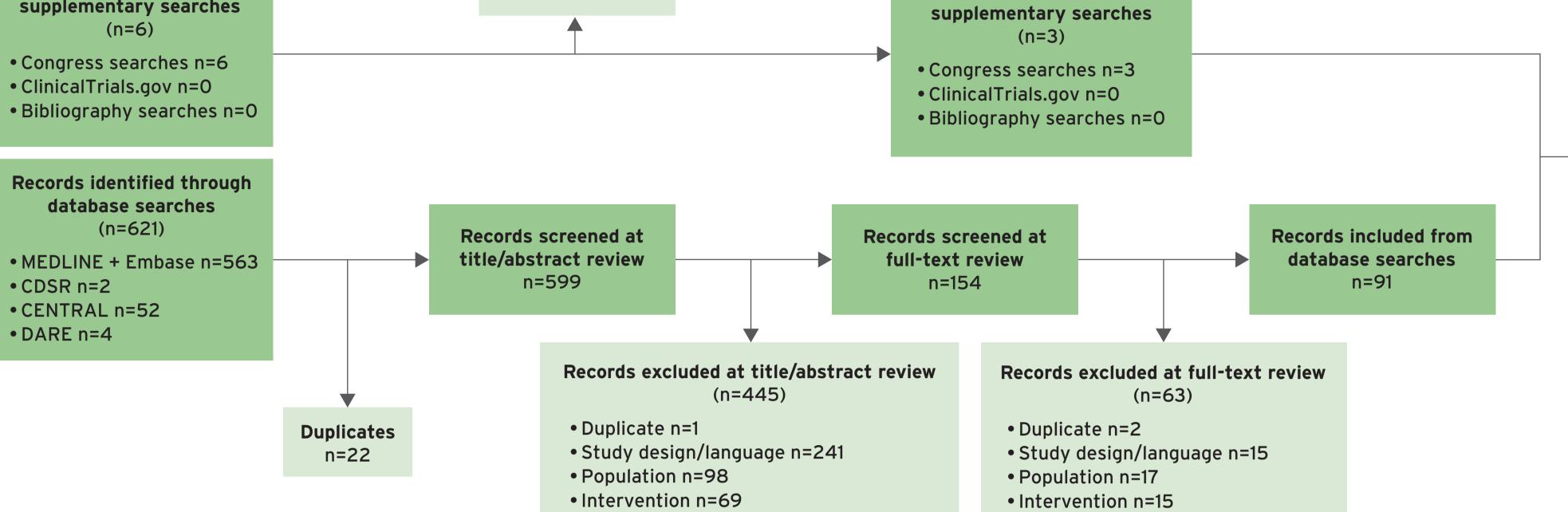

**REFERENCES:** <sup>1</sup>Grube M. Biol Blood Marrow Transplant 2016;22(10):1781–91; <sup>2</sup>Greinix HT. Leukemia 2022;36(11):2558–66; <sup>3</sup>Drexler B. Transfus Med Hemother 2020;47(3):214−25; <sup>4</sup>Nygaard M. Eur. J. Haematol 2020;104(5):361−75. **AUTHOR DISCLOSURES: ZD:** Research support from Incyte, Regimmune and Taiho Oncology; consulting fees from Incyte, Inhibrx, MorphoSys, Ono Pharmaceutical, PharmaBiome and Sanofi. LF: Travel fees from Sanofi. TH: Honoraria from Amgen, Bristol-Myers-Squibb, GlaxoSmithKline and Jazz; consulting or advisory role for Amgen, Bristol-Myers-Squibb, GlaxoSmithKline, Jazz, Kite/Gilead, Novartis, Pfizer and Sanofi; travel/accommodation/expenses from AbbVie Amgen, Astellas, BeiGene, Bristol-Myers-Squibb, GlaxoSmithKline, Immatics, Janssen, Jazz, Kite/Gilead, Neovii and Sanof **DK:** Research grant from Novartis; honoraria from Novartis and Sanofi; advisory boards for Novartis and Sanofi. VM: Research grants from Gilead, MSD and Pfizer; advisory boards for Allovir, Gilead, Mundipharma, Pfzier and Sanofi; honoraria from Cidara, Gilead, Novartis, Pfizer, Sanofi and Therakos. **DM:** Research grant from CSL Behring; honoraria from Incyte, Jazz, Novartis and Mallinckrodt. Al: Employee of Therakos UK. AP: Employee of Costello Medical Consulting **AK:** Employee of Costello Medical Consulting.


**ACKNOWLEDGMENTS:** The authors acknowledge Priva Miranda, MBA, from Mallinckrodt Pharmaceuticals for publication direction. The authors also extend thanks to Jessica Albutt, MSc and Joseph Smith, PhD, from Costello Medical, UK, for medical writing and editorial assistance based on the authors' input and direction, Christopher Michaels, PhD, from Costello Medical, UK, for statistical support and the Costello Medical Creative team for design support. This study was funded by Mallinckrodt Pharmaceuticals. All costs associated with development of this presentation were funded by Mallinckrodt Pharmaceuticals.

# Summary


An SLR and MA was conducted to evaluate the clinical efficacy of ECP used in the treatment of SR-cGvHD The SLR identified 621 records, of which 47 unique studies reporting on Therakos ECP machines were included

The MA found favorable outcomes with ECP in SR-cGvHD,






including OS, FFS and ORR



# FIGURE 1. PRISMA Diagram Records identified through supplementary searches



CDSR: Cochrane Database of Systematic Reviews; CENTRAL: The Cochrane Central Register of Controlled Trials; DARE: Database of Abstracts of Reviews of Effect.

• Outcomes n=36

### FIGURE 2. Pooled OS rate at Month 12

| Study             | <b>Events</b> | <b>Total Patients</b> | Events per 100 Observations | Proportion | 95% CI          |
|-------------------|---------------|-----------------------|-----------------------------|------------|-----------------|
|                   |               |                       |                             |            |                 |
| Akhtari 2010      | 18            | 25                    |                             | 72.00      | [50.61; 87.93]  |
| Amat 2021         | 22            | 25                    |                             | 88.00      | [68.78; 97.45]  |
| Belizaire 2019    | 20            | 25                    |                             | 80.00      | [59.30; 93.17]  |
| Bisaccia 2006     | 14            | 14                    | <del>:</del>                | 100.00     | [76.84; 100.00] |
| Couriel 2006      | 38            | 71                    |                             | 53.52      | [41.29; 65.45]  |
| Dignan 2012       | 66            | 82                    | <del> :</del>               | 80.49      | [70.26; 88.42]  |
| Jagasia 2009      | 23            | 31                    |                             | 74.19      | [55.39; 88.14]  |
| Kansu 2022        | 45            | 53                    |                             | 84.91      | [72.41; 93.25]  |
| Linn 2021         | 64            | 75                    |                             | 85.33      | [75.27; 92.44]  |
| Messina 2003      | 40            | 44                    |                             | 90.91      | [78.33; 97.47]  |
| Motolese 2007     | 21            | 24                    |                             | 87.50      | [67.64; 97.34]  |
| Nygaard 2019      | 51            | 54                    |                             | 94.44      | [84.61; 98.84]  |
| Sakellari 2018    | 69            | 82                    |                             | 84.15      | [74.42; 91.28]  |
| Whittle 2017      | 86            | 99                    |                             | 86.87      | [78.59; 92.82]  |
|                   |               |                       |                             |            |                 |
|                   |               |                       | :<br>:<br>:                 |            |                 |
| Pooled Proportion | n             | _                     |                             | 83.97      | [77.33; 88.94]  |
| Heterogeneity: /² | =72%, p < 0   | 0.01                  | 40 60 00 100                |            |                 |
|                   |               |                       | 40 60 80 100                |            |                 |
|                   |               |                       | Proportion of Patients      |            |                 |

CI: confidence interval; OS: overall survival

CI: confidence interval; FFS: failure-free survival

### FIGURE 4. Pooled ORR at Months 6-8

| Study                    | Events      | Total Patients | Events per 100 Observations   | Proportion | 95% CI          |
|--------------------------|-------------|----------------|-------------------------------|------------|-----------------|
| Outcome Asessm           | ent Criteri | a = NIH        |                               |            |                 |
| Dignan 2012              | 65          | 82             |                               | 79.27      | [68.89; 87.43]  |
| Dignan 2014              | 19          | 27             |                               | 70.37      | [49.82; 86.25]  |
| Gandelman 2018           | 20          | 49             | <del>- 1</del>                | 40.82      | [27:00; 55.79]  |
| Jagasia 2019             | 21          | 29             |                               | 72.41      | [52.76; 87.27]  |
| Linn 2021                | 36          | 63             |                               | 57.14      | [44.05; 69.54]  |
| Nygaard 2019             | 16          | 53             |                               | 30.19      | [18.34; 44.34]  |
| Whittle 2011             | 20          | 39             |                               | 51.28      | [34.78; 67.58]  |
| Zeiser 2021              | 16          | 55             |                               | 29.09      | [17.63; 42.90]  |
| <b>Pooled Proportion</b> | 1           | _              |                               | 54.06      | [37.51; 69.75]  |
| Heterogeneity: /2:       | =87%, p < 0 | 0.01           |                               |            |                 |
| Outcome Assessr          | nent Criteı | ria = non-NIH  |                               |            |                 |
| Couriel 2006             | 28          | 44             |                               | 63.64      | [47.77; 77.59]  |
| De Novellis 2021         | 13          | 13             |                               | 100.00     | [75.29; 100.00] |
| Flowers 2008             | 19          | 48             |                               | 39.58      | [25.77; 54.73]  |
| Okamoto 2018             | 8           | 15             |                               | 53.33      | [26.59; 78.73]  |
| Piccirillo 2021          | 16          | 23             |                               | 69.57      | [47.08; 86.79]  |
| <b>Pooled Proportion</b> | 1           | _              |                               | 66.26      | [34.55; 87.96]  |
| Heterogeneity: /2:       | =48%, p=0   | .10            |                               |            |                 |
| Pooled Proportion        | 1           | _              |                               | 58.23      | [45.04; 70.35]  |
| Heterogeneity: /2:       | =80%, p < 0 | 0.01           |                               |            |                 |
| Test for subgroup        | difference  | s:             | 0 20 40 60 80 100             |            |                 |
| $x^2/_1 = 0.86$ , df = 1 | (p = 0.35)  |                | <b>Proportion of Patients</b> |            |                 |

• Outcomes n=14

CI: confidence interval; NIH: National Institutes of Health; ORR: overall response rate.

**CI:** confidence interval

### FIGURE 3. Pooled FFS rate at Month 12

| Study                                  | Events | Total Patients | Events per 100 Observations               | Proportion | 95% CI         |
|----------------------------------------|--------|----------------|-------------------------------------------|------------|----------------|
| Belizaire 2019                         | 19     | 25             | <del>:</del> +                            | 76.00      | [54.87; 90.64] |
| Jagasia 2019                           | 10     | 18             |                                           | 55.56      | [30.76; 78.47] |
| Linn 2021                              | 51     | 75             |                                           | 68.00      | [56.22; 78.31] |
| Nygaard 2019                           | 22     | 51             |                                           | 43.14      | [29.35; 57.75] |
| Pooled Proportion                      |        | -              |                                           | 60.79      | [38.94; 79.03] |
| Heterogeneity: /²=71%, <i>p</i> < 0.01 |        | .01            | 20 40 60 80 100<br>Proportion of Patients |            |                |

### FIGURE 5. Pooled skin-specific response at Months 4–6

| Study                         | Events | Total Patients | Events per 100 Observations                 | Proportion | 95% CI         |
|-------------------------------|--------|----------------|---------------------------------------------|------------|----------------|
| Belizaire 2019                | 9      | 19             | <del></del>                                 | 47.37      | [24.45; 71.14] |
| Gandelman 2018                | 36     | 65             |                                             | 55.38      | [42.53; 67.73] |
| Okamoto 2018                  | 3      | 11             |                                             | 27.27      | [6.02; 60.97]  |
| Seaton 2003                   | 10     | 21             |                                             | 47.62      | [25.71; 70.22] |
| Whittle 2017                  | 54     | 75             |                                             | 72.00      | [60.44; 81.76] |
| Pooled Proportion             | า      | _              |                                             | 54.22      | [35.67; 71.67] |
| Heterogeneity: /2=65%, p=0.02 |        | .02            | 0 20 40 60 80 100<br>Proportion of Patients |            |                |

# Results

Records prioritized

for extraction

47 unique studies

(54 publications)

- ► The SLR identified 621 records, of which 47 unique studies reporting on Therakos ECP machines (inline; CELLEX™ or UVAR-XTS™) were included; Figure 1.
- ► In general, reporting of study characteristics and outcomes was inconsistent.
- The majority of studies (n=28) reported on adult only populations (≥18 years). Lines of therapy were poorly reported (n=15) and ranged from 0 to ≥4 lines of previous treatment. Most studies (n=27) used a retrospective case series study design.
- For long-term efficacy, the pooled OS rate at Month 12 was 83.97% (95% confidence interval [CI]: 77.33-88.94; 14 studies, 704 patients; **Figure 2**).
- ► At Month 60, the pooled OS rate was 57.96% (95% CI: 35.48-77.56; 8 studies, 431 patients).
- Results from four studies (169 patients) indicated a pooled FFS rate of 60.79% at Month 12 (95% CI: 38.94-79.03; Figure 3).
- ► For short-term efficacy, the pooled ORR was 45.34% (95% CI: 26.64-65.45) at Months 3-4 (7 studies; 293 patients) and 58.23% (95% CI: 45.04-70.35) at Months 6-8 (13 studies; 540 patients; Figure 4).
- Subgroup analyses showed no significant difference in ORR between studies utilizing NIH criteria and those utilizing non-NIH criteria.
- ► The pooled skin-specific response was 34.86% (95% CI: 13.26–65.21) at Months 2–3 and 54.22% (95% CI: 35.67-71.67) at Months 4-6; **Figure 5**.
- ► There was considerable heterogeneity across all analyses, with I<sup>2</sup> values ranging from 65% to 91%.

## Discussion

- ► An important limitation of this study was the inconsistency of reporting across the literature which resulted in high heterogeneity.
- ► This highlights the need for consistent study reporting in the field; future primary research should aim to harmonize diagnostic and outcome criteria, including timepoints for response measurement, as well as consistency in reporting baseline characteristics of patients.
- ► However, due to the relative rarity of cGvHD, patient recruitment can be challenging, limiting the size and quality of potential studies.

This recent systematic review and MA indicated that ECP results in favorable clincial outcomes in SR-cGvHD, including OS, FFS and ORR.