

Introduction

- ▶ Infantile spasms (IS) are seizures, clinically characterized by a sudden, rapid contraction of the trunk and limbs with varied intensity and often occurring in clusters
- ► IS is a relatively rare disorder (estimated incidence: 0.25-0.42/1000 live births per year)¹
- ▶ The median delay in treatment of IS is 24.5 days, in part due to misdiagnosis as gastroesophageal reflux, benign sleep myoclonus, or normal infant movements²
- Delayed diagnosis and treatment initiation in IS can lead to long-term neurobehavioral problems^{2,3}
- Predictive clinical factors that can identify infants with undiagnosed IS and/or enable a shorter time to treatment initiation represent a critical medical need
- ► The goal of this study was to develop predictive models to identify patients with undiagnosed IS using a population-based claims database (Symphony Health Integrated Dataverse [IDV][®]) and then refer these patients to an appropriate health care professional

Cohort Identification

- ► The IDV database captures de-identified patient-level medical and pharmacy claims from more than 12,000 US health plans, 1.8 million prescribers, and 280 million active patients, with almost 14 years of history as of 2018
- ► For the present analysis, 10,837,709 patients less than 2 years old with any claims activity (prescription, diagnosis, procedure, or symptom) between May 2017 and April 2018 were identified
- ▶ Patients with a diagnosis of IS before the observation period were excluded: *International* Classification of Diseases (ICD)-9: 345.60, 345.61; ICD-10: G40.821-G40.824 (implemented Oct 1, 2015)
- Outcomes for patients meeting inclusion criteria were tracked from May 2017 to November 2018 to identify any subsequent diagnoses of IS

Analysis

► The project utilized input from medical experts and analyses of the IDV database to identify early presentations/diagnoses that are characteristic of IS (Table 1)

Category	Presentation/Diagnosis		
Nervous system	Delays in developmental milestones Hypsarrhythmia [†] Encephalopathy [†] Brain Injury		
Eye‡	Chorioretinitis Retinal tubers Chorioretinal lacuna defects/ Aicardi syndrome		
Skin disorders	Tuberous sclerosis (hypopigmented skin lesions)		
Metabolic disorders	Sturge-Weber syndrome Krabbe disease Neurofibromatosis		
Other common misdiagnoses	Normal startle reflex Colic Reflux		

Table 1. Initial List of Presentations/Diagnoses Thought to Be **Predictive of a Later Diagnosis of IS**

+ Definitive symptoms. + Eye symptom-related diagnostic codes were not seen in the early data investigations.

Clinical Pathways Leading to a Diagnosis of Infantile Spasms Using a Claims Database

David M. Okimoto,¹ Shubhada Maru,² Adam L. Numis,³ Mary P. Panaccio,¹ George J. Wan,¹ Vikram Singh²

¹Mallinckrodt Pharmaceuticals, Bedminster, NJ; ²Symphony Health Solutions, Blue Bell, PA; ³UCSF Benioff Children's Hospital, San Francisco, CA

Five combinations of clinical factors were identified that best predicted a later IS diagnosis (Figures 2 and 3; Table 2)

Presented at American Epilepsy Society• Baltimore, MD, USA • December 6-10, 2019

► The most successful of the predictive models identified 557 patients who had a) ≥ 2 symptoms pertaining to IS (diagnosis, prescription, or procedure claims from ≥2 categories of symptoms from defined lists: seizures, developmental delay, lack of eye contact, lack of muscle tone, etc) plus b) a moderate/high severity emergency department visit (Figure 2) • Of the 557 patients identified by this combination of clinical factors, 304 (54.6%) were

• These patients received a diagnostic code for IS within a median of 24 days of the occurrence of the predictive events (**Figure 3**)

Figure 2. Combinations of Clinical Factors Associated With an IS Diagnosis: Percentage of Identified Patients Who Were Later

Abbreviations: CT, computed tomography; Conv, convulsions; Dev Delay, developmental delay; Dysph, dysphagia; Dx, diagnosis; ED, emergency department; EEG, electroencephalogram; IS, infantile spasm; MRI, magnetic resonance imaging.

Figure 3. Combinations of Clinical Factors Associated With an IS Diagnosis: Median Time to First IS Diagnosis

Abbreviations: CT, computed tomography; Conv, convulsions; Dev Delay, developmental delay; Dysph, dysphagia; Dx, diagnosis; ED, emergency department; EEG, electroencephalogram; IS, infantile spasm; MRI, magnetic resonance imaging.

Table 2. Combinations of Clinical Factors Predictive of IS: Positive **Predictive Value**

Combination of Predictive Factors	Actual IS Patients Identified (n)	Potential IS Patients Identified (n)	Positive Predictive Value (%)
≥2 Symptoms + ED Visit (Moderate / High Severity)	304	557	54.6%
Encephalopathy + Other Symptom (Any Order)	323	5,198	6.2%
Conv / Dysph / Dev Delay + EEG Procedure or Abdominal EEG Dx	345	13,208	2.6%
≥2 EEGs + Brain MRI / CT + Neonatal Specialist or Neurologist Visit	40	2,061	1.9%
≥2 Symptoms + Neurologist Visit	406	27,198	1.5%

Abbreviations: CT, computed tomography; Conv, convulsions; Dev Delay, developmental delay; Dysph, dysphagia; Dx, diagnosis; ED, emergency department; EEG, electroencephalogram; IS, infantile spasm; MRI, magnetic resonance imaging.

Conclusions

- ▶ Our analysis identified the combination of a) ≥ 2 symptoms plus b) a moderate/high severity ED visit as the strongest predictor (highest positive predictive value) for identification of IS in real-world patient care scenarios using our analysis set
- ► This combination of clinical factors identified IS patients approximately 24 days prior to diagnosis
- ► These results may support the application of this rule in electronic medical records to flag patients with a high probability of being diagnosed with IS. Additional validation of the algorithm in an electronic medical records database is needed
- ▶ Limitations include use of *ICD-10* for evaluation of IS, which may fail to identify all IS cases. Similarly, the rules relied on the accuracy of coding of diagnoses and procedures
- Further research is needed to examine the impact of optimization of early diagnosis and treatment on patient health outcomes

References 1. Cowan LD, Hudson LS. J Child Neurol. 1991;6(4):355-364

2. Hussain SA, et al. J Pediatr. 2017;190:215-221.e1. 3. O'Callaghan FJ, et al. Epilepsia. 2011;52(7):1359-1364.

Acknowledgment and Funding Professional writing and editorial support was provided by MedLogix Communications, LLC, Itasca, Illinois, under the direction of the authors and was funded by Mallinckrodt Pharmaceuticals.